188ÌåÓýapp¹ÙÍø_188ÌåÓýͶע

·µ»ØÊ×Ò³
ÄúµÄλÖãºÊ×Ò³ > ÐÂÎÅ > CCFÐÂÎÅ > ADL

CCF ADL103¡¶ÈºÌåÖÇÄܼÆËã¡·¿ªÊ¼±¨ÃûÁË

ÔĶÁÁ¿:5924 2019-08-30 Êղر¾ÎÄ

CCFѧ¿ÆÇ°Ñؽ²Ï°°à

The CCF Advanced Disciplines Lectures

CCF ADLµÚ103ÆÚ

Ö÷Ìâ ÈºÌåÖÇÄܼÆËã

2019Äê9ÔÂ21ÈÕ-23ÈÕ

±±¾©?±±¾©º½¿Õº½Ìì´óѧ

2019_08_21_0950558939

½üÄêÀ´£¬È˹¤ÖÇÄÜ·¢Õ¹Õý¾­Àú¾çÁÒ±ä¸ï£¬Í¨¹ýÍøÂçÁª½áÈËÀàȺÌåµÄÎÊÌâÇó½âģʽÕý·¢»Ó×ÅÈÕÒæÖØÒªµÄ×÷Óã¬ÒÑÓÐÖÇ»ÛÓ¿ÏÖµÄÇ÷ÊÆ£¬ÈºÌåÖÇÄܳõ¼û¶ËÄß¡£ÈºÌåÖÇÄÜָͨ¹ýÌØ¶¨×éÖ¯½á¹¹ÎüÒý¡¢»ã¾ÛºÍ¹ÜÀí´ó¹æÄ£²ÎÓëÕßÍê³ÉÈÎÎñʱËùÓ¿ÏÖ³ö³¬Ô½¸öÌåÖÇÁ¦µÄÖÇÄÜ¡£µ±Ç°£¬ÈºÌåÖÇÄÜÊÇ»úÆ÷ѧϰ¡¢´óÊý¾Ý¡¢ÎïÁªÍø¡¢Òþ˽°²È«ºÍ²©ÞÄÂ۵ȶàÑо¿ÁìÓòµÄ½»²æÈںϣ¬Ò²ÊÇ×î¾ßÓ°ÏìÁ¦µÄÈ˹¤ÖÇÄÜÇ°ÑØÑо¿ÁìÓòÖ®Ò»¡£

±¾ÆÚCCFѧ¿ÆÇ°Ñؽ²Ï°°à¡¶ÈºÌåÖÇÄܼÆËã¡·£¬½²ÊÚµ±Ç°¸ÃÁìÓòµÄ×îÐÂÑо¿½øÕ¹ºÍ¹Ø¼ü¼¼ÊõÍ»ÆÆ£¬Ï£ÍûÄܹ»°ïÖúÑ§Ô±ÍØ¿í¿ÆÑÐÊÓÒ°£¬¿ìËÙÁ˽âÕâÒ»ÁìÓòµÄÑо¿ÈȵãºÍÇ°ÑØ¶¯Ì¬£¬°ÑÎÕѧ¿Æ·¢Õ¹¶¯Ïò£¬²¢ÔÚѧÊõ½»Á÷ÖÐÕÆÎÕÖØÒªµÄÑо¿ºÍÓ¦Ó÷½·¨¡£

±¾ÆÚ½²Ï°°àÑûÇëµ½Á˱¾ÁìÓò7λÀ´×Ôº£ÄÚÍâÖøÃû¸ßУÓë¿ÆÑлú¹¹µÄÖØÁ¿¼¶×¨¼ÒѧÕß×öÖ÷Ìⱨ¸æ¡£ËûÃǽ«½éÉÜȺÌåÖÇÄÜÖеÄÁª°îѧϰ¡¢Ç¿»¯Ñ§Ï°¡¢Ç¨ÒÆÑ§Ï°¡¢¶àÖÇÄÜÌåϵͳ¡¢ÖÚ°ü¼ÆË㡢ȺÖǸÐÖªµÈºËÐÄËã·¨ÓëÓ¦Óü¼Êõ£¬²¢ÉîÈëdz³ö½²½â¸ÃÁìÓòµ±Ç°µÄÈȵãÎÊÌ⣬ÁªÏµÊµ¼Ê°¸Àý¶ÔÈçºÎ¿ªÕ¹±¾ÁìÓòÇ°ÑØ¼¼ÊõÑо¿½øÐÐÖ¸µ¼£¬Ê¹²Î¼ÓÕßÁ˽âѧ¿ÆÈÈµã¡¢ÕÆÎÕ¼¼Êõ¶¯Ì¬¡¢ÔöÇ¿ÀíÂÛºÍʵ¼ùµÄ½áºÏÄÜÁ¦¡£


ѧÊõÖ÷ÈΣºÍ¯Ó½ê¿ ±±¾©º½¿Õº½Ìì´óѧ 

Ö÷°ìµ¥Î»£ºÖйú¼ÆËã»úѧ»á

»î¶¯Èճ̣º

WechatIMG335


ÌØÑû½²Õߣº³ÂÀ× £¬Ïã¸Û¿Æ¼¼´óѧ  ½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦

ͼƬ2

¼ò½é£ºLei Chen received the BS degree in computer science and engineering from Tianjin University, Tianjin, China, in 1994, the MA degree from Asian Institute of Technology, Bangkok, Thailand, in 1997, and the Ph.D. degree in computer science from the University of Waterloo, Canada, in 2005. He is currently a full professor in the Department of Computer Science and Engineering, Hong Kong University of Science and Technology. His research interests include crowdsourcing, social media analysis, probabilistic and uncertain databases, and privacy-preserved data publishing. The system developed by his team won the excellent demonstration award in VLDB 2014. He got the SIGMOD Test-of-Time Award in 2015. He is PC Track chairs for SIGMOD 2014, VLDB 2014, ICDE 2012, CIKM 2012, SIGMM 2011. He has served as PC members for SIGMOD, VLDB, ICDE, SIGMM, and WWW. Currently, he serves as PC co-chair for VLDB 2019, Editor-in-Chief of VLDB Journal and associate editor-in-chief of IEEE Transaction on Data and Knowledge Engineering. He is a member of the VLDB endowment and ACM Distinguished Scientist.

ÌâÄ¿£ºHuman Powered AI Paradigm

ͻ񻣼Since deep learning algorithms achieved reasonable recognition accuracy compared to that of human being in ImageNet competition in 2012, AI has attracted a lot attention. The successful stories of AI enabled technologies have emerged in many applications, from sports such as Alpha go games and Texas hold 'em to our daily lives such as Siri and Google Assistant. However, due to lacking of well labelled data, some fields, such as text understanding and language translation, AI still has encountered many difficulties. To get more high quality labelled data, it is essential study Human-AI and Human-Data interaction. Specifically, we need to get human involved in the AI loop, from data source identification, data extraction, feature selection, data labeling and hyper-parameter tuning to model verification, in order to improve the effectiveness of AI technologies.

In this tutorial, I will discuss this new human powered AI paradigm. To achieve this end to end intuitive Human-AI, there are several key issues that we need to investigate. I will focus on how to motivate human to prepare data, how to assign proper tasks to human and how to use AI to reduce human errors. At the end, I will highlight some future research directions on this end to end Human-AI powered paradigm.


ÌØÑû½²ÕߣºÕÅÎ°éª £¬ÉϺ£½»Í¨´óѧ  ÖúÀí½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦

ͼƬ2

¼ò½é£ºÕÅΰ骣¬²©Ê¿£¬ÉϺ£½»Í¨´óѧԼº²¡¤»ôÆÕ¿ËÂÞ·òÌØ¼ÆËã»ú¿ÆÑ§ÖÐÐÄÖúÀí½ÌÊÚ£¬²©Ê¿Éúµ¼Ê¦£¬Ñо¿·½ÏòΪ¶àÖÇÄÜÌåÉî¶ÈÇ¿»¯Ñ§Ï°¡¢Î޼ලѧϰ¼°ÆäÔÚÊý¾ÝÍÚ¾òÎÊÌâÖеÄÓ¦Óá£ËûÓÚ2011Äê±ÏÒµÓÚÉϺ£½»Í¨´óѧ¼ÆËã»úϵACM°à£¬ÓÚ2016Äê»ñµÃÓ¢¹úÂ×¶Ø´óѧѧԺ¼ÆËã»úϵ²©Ê¿Ñ§Î»£¬Ñо¿³É¹ûÔÚ¹ú¼ÊÒ»Á÷µÄ»áÒéºÍÆÚ¿¯ÉÏ·¢±í70ÓàÆªÂÛÎÄ¡£ÔÚWWW¡¢SIGIR¡¢AAAIµÈ»áÒéµ£Èθ߼¶³ÌÐòίԱ¡£2017Äê»ñµÃACM¹ú¼ÊÐÅÏ¢¼ìË÷»áÒéSIGIRµÄ×î¼ÑÂÛÎÄÌáÃû½±£»2017Äê»ñµÃÉϺ£ACMÐÂÐǽ±£»188ÌåÓýapp¹ÙÍø£º»ñµÃ°¢Àï°Í°Í´ïĦԺÇà³È½±¡£

ÌâÄ¿£º¶àÖÇÄÜÌåÇ¿»¯Ñ§Ï°£ºËã·¨Óëϵͳ

ÕªÒª£ºËæ×ÅÈ˹¤ÖÇÄÜ¡¢5GºÍÎïÁªÍøµÈ¼â¶Ë¼¼ÊõÉøÍ¸½øÎÒÃǵÄÉú»î£¬ÎÒÃÇÓÐÀíÓÉÏàÐÅÔÚ²»¾ÃµÄ½«À´£¬ÎÒÃǽ«Éú»îÔÚÒ»¸öÍòÎﻥÁªµÄÖÇÄÜʱ´ú¡£ÖÇÄÜÆ÷¼þ½«²»ÔÙÖ»ÊÇÓëÈË»òÕßÒ»¶Ñ¹Ì¶¨µÄÊý¾Ý½»Á÷£¬ËüÃÇÖ®¼ä»áÏ໥½»Á÷¡¢Ð­×÷ÉõÖÁÊǾºÕù£¬´Ó¶øÍê³ÉÎÒÃǵ±Ç°ÎÞ·¨ÏëÏóµÄ¸ß¼¶ÖÇÄÜÈÎÎñ¡£ÔÚѧÊõ·½Ã棬ǿ»¯Ñ§Ï°ºÍ²©ÞÄÂÛ·Ö±ð´ú±íÁ˾ö²ßÖÇÄܺͶàÖÇÄÜÌåϵͳµÄ¼¼ÊõÇ°ÑØÁìÓò£¬ÕâÁ½¸öÁìÓòµÄ½»²æ¼«¿ÉÄܱŷ¢³öÍòÎﻥÁªµÄÖÇÄÜʱ´úµÄÐÂÒ»´ú¼¼Êõ¡£±¾´Î±¨¸æ£¬ÎÒ½«´Ó¶àÖÇÄÜÌåÉî¶ÈÇ¿»¯Ñ§Ï°µÄ»ù´¡ÖªÊ¶½²Æð£¬°üÀ¨´«Í³Ç¿»¯Ñ§Ï°¡¢Éî¶ÈÇ¿»¯Ñ§Ï°ÒÔ¼°²©ÞÄÂÛ»ù´¡¡£½Ó×ÅÎÒ½«´Ó¼¸¸öÂ䵨ÈÎÎñÇÐÈ룬ÌÖÂÛ¶àÖÇÄÜÌåÇ¿»¯Ñ§Ï°µÄ¼¸¸ö¾­µä½â¾ö·½·¨£¬¼òÊöËüÃǵĻù´¡¹±Ï׺;ÖÏÞÐÔ¡£Ö®ºóÎÒ½«½éÉÜ2017ÄêÆðµ½×î½üÌá³öµÄ×îжàÖÇÄÜÌåÉî¶ÈÇ¿»¯Ñ§Ï°Ëã·¨£¬Ì½ÌÖÕâЩ½â¾öËã·¨Ëæ×ÅÖÇÄÜÌåÊýÁ¿µÄÔö¼ÓÆä¸´ÔӶȵı仯¡£×îºó£¬ÎÒ½«ÉîÈ뺣Á¿ÖÇÄÜÌ峡¾°ÏµIJ»Í¬³¡¾°£¬Ì½ÌÖÔÚº£Á¿ÖÇÄÜÌåµÄÇé¿öÏ£¬´«Í³¶àÖÇÄÜÌåÇ¿»¯Ñ§Ï°·½·¨µÄ²»×㣬²¢ÉîÈë½éÉÜ»ùÓÚÆ½¾ù³¡ÀíÂÛµÄÇ¿»¯Ñ§Ï°ºÍ»ùÓÚÒò×Ó·Ö½âÄ£Ð͵ÄÇ¿»¯Ñ§Ï°Ëã·¨¡£ÁíÒ»·½Ã棬ÎÒ½«½éÉÜMAgent¡¢CityFlowµÈרΪº£Á¿ÖÇÄÜÌ峡¾°ÌṩģÄâʵÑéµÄƽ̨£¬²¢Õ¹Ê¾ÉÏÊöËã·¨ÔÚ¸ÃÆ½Ì¨Éϵijõ²½ÊµÑéЧ¹ûºÍÒµ½çÂ䵨Çé¿ö¡£


ÌØÑû½²ÕߣºÀî¹úÁ¼ £¬Ç廪´óѧ  ½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦

ͼƬ2

¼ò½é£ºÀî¹úÁ¼£¬Ç廪´óѧ¼ÆËã»úϵ½ÌÊÚ£¬Èí¼þËùËù³¤¡£Ö÷ÒªÑо¿·½ÏòΪÊý¾Ý¿â¡¢´óÊý¾ÝÍÚ¾òÓë·ÖÎö¡¢ÈºÖǼÆËã¡£ÔÚÊý¾Ý¿â¡¢Êý¾ÝÍÚ¾ò¡¢ÐÅÏ¢¼ìË÷ÁìÓòµÄ¶¥¼¶»áÒéºÍÆÚ¿¯ÉÏ·¢±íÂÛÎÄ100ÓàÆª£¬ËûÒý6500Óà´Î£¬ÈëÑ¡°®Ë¼Î¨¶û2014-188ÌåÓýapp¹ÙÍø£ºÖйú¸ß±»ÒýѧÕß°ñµ¥¡£Ö÷³Ö¹ú¼ÒÓÅÐãÇàÄê»ù½ð¡¢ÇàÄê973¡¢×ÔÈ»»ù½ðÖØµãµÈÏîÄ¿¡£»ñµÃÁËVLDB Early Career Research Contribution Award£¨VLDB½Ü³öÇàÄê¹±Ï×½±£¬ÑÇÖÞΨһһ룩¡¢IEEE TCDE Early Career Award£¨IEEE Êý¾Ý¹¤³ÌÁìÓò½Ü³öÐÂÈ˽±£¬ÑÇÖÞΨһһ룩¡¢ÇàÄ곤½­Ñ§Õß¡¢¹ú¼ÒÍòÈ˼ƻ®ÇàÄê°Î¼âÈ˲𢼯Ëã»úѧ»áÇàÄê¿ÆÑ§¼Ò½±µÈ½±Ïî¡£µ£ÈÎVLDB Journal¡¢IEEE TKDE¡¢IEEE Data Engineering Bulletin¡¢ACM Transactions on Data ScienceµÈÆÚ¿¯±àί£¬¶à´Îµ£ÈÎSIGMOD¡¢VLDB¡¢KDD¡¢ICDE¡¢WWW¡¢IJCAI¡¢AAAIµÈ»áÒéµÄ³ÌÐòίԱ»áίԱ¡£»ñµÃ¹ýAÀà»áÒéKDD18¡¢ICDE18×î¼ÑÂÛÎĺòÑ¡£¬BÀà»áÒéCIKM17×î¼ÑÂÛÎĽ±¡¢DASFAA14µÄ×î¼ÑÂÛÎÄÌáÃû½±¡¢CÀà»áÒéAPWeb14×î¼ÑÂÛÎĽ±¡¢EDBT13´óÊý¾Ý±ÈÈü¹Ú¾ü¡£»ñ¹ú¼Ò¿Æ¼¼½ø²½¶þµÈ½±¡¢½­ËÕÊ¡¿Æ¼¼½ø²½Ò»µÈ½±¡¢½ÌÓý²¿×ÔÈ»¿ÆÑ§½±¶þµÈ½±¡£

±êÌâ:´óÊý¾ÝȺÌ弯Ëã

ÕªÒª:´óÊý¾ÝÎÊÌâËù¹ÌÓеĹæÄ£·±ÔÓÐÔ¡¢¸ßËÙÔö³¤ÐÔ¡¢ÐÎʽ¶àÑùÐÔ¡¢¼ÛÖµÃܶȵ͵ÈÌØµãΪ´«Í³¼ÆËã´¦Àí·½·¨´øÀ´ÁËÑϾþµÄÌôÕ½¡£Ò»·½Ã棬´óÊý¾ÝµÄ¹æÄ£·±ÔÓÐԺ͸ßËÙÔö³¤ÐÔ´øÀ´Á˺£Á¿¼ÆËã·ÖÎöµÄÐèÇó£