联手自然语言处理专业委员会:“属性级别情感分析”术语发布 | CCF术语快线
本期发布术语热词:属性级别情感分析(Aspect-based(level) Sentiment Analysis)。
开篇导语: 此文为CCF术语工委联合自然语言处理专委会推出的计算机行业术语介绍文章。本期所选热词为属性级别情感分析,也称方面级别情感分析,和实体级别情感分析紧密关联,属于细粒度情感分析,是情感分析中的一个重要任务分支之一,有着巨大的实用价值。本文简要介绍属性级别情感分析的定义,发展历程,最后阐述并分析了这一任务面临的挑战。 属性级别情感分析(Aspect-based(level) Sentiment Analysis) 作者:张梅山,哈尔滨工业大学(深圳) InfoBox: 中文名:属性(方面)级别情感分析 外文名:Aspect-based(level)Sentiment Analysis 简称:ASA,ABSA 学科:自然语言处理 实质:一种细粒度的情感分析任务,从一般句子级别的情感分类细化至某个特定物体某个具体属性或者方面上的情感类别预测。 词条定义: 属性级别情感分析(Aspect-based Sentiment Analysis, ABSA)是情感分析领域内的一个细分任务。普通的句子级别情感分析是针对一个句子分析其整体的情感极性,然而这一方式很难满足一些特定的应用需求,比如针对一款笔记本电脑的某个评论:“这款笔记本性能不错,就是显示屏有点大,重量有点重”,商家或购买者更想知道该条评论针对笔记本的哪些具体属性分别做出了什么样的极性评价。一般而言,这一任务首先要自动从评论文本中提取所有的相关属性,如“性能”、“显示屏”以及“重量”等,然后分析这一评论对这些属性所展现出来的具体情感极性,因此属性级别情感分析实际上包含两个子任务,即属性抽取和基于给定属性的情感极性分析。 属性级别情感分析的发展: 参考文献 [1]Kim Schouten and Flavius Frasincar. Survey on aspect-level sentiment analysis. IEEE Transactions on Knowledge and Data Engineering 28.3 (2015): 813-830. [2]Duy-Tin Vo and Yue Zhang. Target-dependent Twitter Sentiment Classification with Rich Automatic Features. In Proceedings of IJCAI 2015. [3]Meishan Zhang, Yue Zhang and Duy Tin Vo. Neural Networks for Open Domain Targeted Sentiment. In proceedings of EMNLP 2015. [4]Qing Dou, Ashish Vaswani, Kevin Knight, and Chris Dyer. Unifying Bayesian Inference and Vector Space Models for Improved Decipherment. In Proceedings of ACL-IJCNLP 2015, pages 836–845. [5]Duyu Tang, Bing Qin, and Ting Liu. Aspect Level Sentiment Classification with Deep Memory Network. In Proceedings of the EMNLP, 2016. [6]Meishan Zhang, Yue Zhang and Duy Tin Vo. Gated Neural Networks for Targeted Sentiment Analysis. In Proceedings of the AAAI 2016. [7]Mikel Artetxe, Gorka Labaka, and Eneko Agirre. Learning bilingual word embedding with (almost) no bilingual data. In Proceedings of ACL 2017, pages 451-462. [8]Shu Lei, Hu Xu, and Bing Liu. Lifelong Learning CRF for Supervised Aspect Extraction. In Proceedings of the 55th ACL, 2017. [9]Peng Chen, Zhongqian Sun, Lidong Bing, and Wei Yang. Recurrent Attention Network on Memory for Aspect Sentiment Analysis. In Proceedings of the EMNLP, 2017. [10]Alexis Conneau, Guillaume Lample, Marc'Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou. Word translation without parallel data. In Proceedings of ICLR 2018. [11]Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun Cho. Unsupervised neural machine translation. In Proceedings of ICLR 2018. [12]Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc'Aurelio Ranzato. Unsupervised machine translation using monolingual corpora only. In Proceedings of ICLR 2018. [13]Hu Xu, Bing Liu, Lei Shu and Philip S. Yu. Double Embeddings and CNN-based Sequence Labeling for Aspect Extraction. In Proceedings of the 56th ACL, 2018. [14]Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, and Marc'Aurelio Ranzato. Phrase- based & neural unsupervised machine translation. In Proceedings of EMNLP 2018, pages 5039-5049. [15]Alexis Conneau and Guillaume Lample. Cross-lingual language model pretraining. In Proceedings of NeurIPS 2019, pages 7057-7067. [16]Zhen Yang, Wei Chen, Feng Wang, and Bo Xu. Unsupervised neural machine translation with weight sharing. In Proceedings of ACL 2018, pages 46-55. [17]Baijun Ji, Zhirui Zhang, Xiangyu Duan, Min Zhang, Boxing Chen, and Weihua Luo. Cross-Lingual Pre- Training Based Transfer for Zero-Shot Neural Machine Translation. In Proceedings of AAAI, 2020, pages 115-122. [18]Chenhua Chen, Zhiyang Teng and Yue Zhang. Inducing Target-Specific Latent Structures for Aspect Sentiment Classification. In Proceedings of the Conference on EMNLP, 2020. [19]Chengqong Gong, Jianfei Yu, and Rui Xia. Unified Feature and Instance Based Domain Adaptation for End-to-End Aspect-Based Sentiment Analysis. In Proceedings of the Conference on EMNLP, 2020. [20]Yunsu Kim, Miguel Gra?a, and Hermann Ney. When and Why is Unsupervised Neural Machine Translation Useless? In Proceedings of EAMT 2020, pages 35-44. [21]Kelly Marchisio and Kevin Duh and Philipp Koehn. When Does Unsupervised Machine Translation Work? In Proceedings of WMT 2020, pages 571-5 [22]Hongjie Cai, Rui Xia and Jianfei Yu. Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions. In Proceedings of the ACL, 2021. [23]Xu, Lu, Yew Ken Chia, and Lidong Bing. Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction. In Proceedings of the 59th ACL, 2021. [24]Jian Liu, Zhiyang Teng, Leyang Cui, Hanmeng Liu and Yue Zhang. Solving Aspect Category Sentiment Analysis as a Text Generation Task. In Proceedings of the EMNLP, 2021. 术语工委及术语平台介绍: 计算机术语审定委员会(Committee on Terminology)主要职能为收集、翻译、释义、审定和推荐计算机新词,并在CCF平台上宣传推广。这对厘清学科体系,开展科学研究,并将科学和知识在全社会广泛传播,都具有十分重要的意义。 术语众包平台CCFpedia的建设和持续优化,可以有效推进中国计算机术语的收集、审定、规范和传播工作,同时又能起到各领域规范化标准定制的推广作用。 新版的CCFpedia计算机术语平台(http://term.ccf.org.cn)将术语的编辑运营与浏览使用进行了整合,摒弃老版中跨平台操作的繁琐步骤,在界面可观性上进行了升级,让用户能够简单方便地查阅术语信息。同时,新版平台中引入188体育app官网:的方式对所有术语数据进行组织,通过图谱多层关联的形式升级了术语浏览的应用形态。 计算机术语审定工作委员会 主任: 刘挺(哈尔滨工业大学) 副主任: 王昊奋(同济大学) 李国良(清华大学) 主任助理: 李一斌(上海海乂知信息科技有限公司) 执行委员: 丁军(上海海乂知信息科技有限公司) 林俊宇(中国科学院信息工程研究所) 兰艳艳(清华大学) 张伟男(哈尔滨工业大学)